If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5m^2+3m-1=0
a = 5; b = 3; c = -1;
Δ = b2-4ac
Δ = 32-4·5·(-1)
Δ = 29
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-\sqrt{29}}{2*5}=\frac{-3-\sqrt{29}}{10} $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+\sqrt{29}}{2*5}=\frac{-3+\sqrt{29}}{10} $
| 8x-20=4x-40 | | 4x+8-3x=0 | | 8(3x+2)=20(x+1) | | e-18=20 | | 7x^2+9x+16=0 | | -0.54x+0.34x=5.8 | | 20(3x+2)=8(x+1) | | 2(20x-2)=36. | | r−6=3.5 | | C(t)=2t+180 | | 24=x/0.6 | | 0=-(0.05)x+11 | | 3/x-2=13/x-2 | | 10x-2=2x+70 | | 2(3)+9y=27 | | 14x+11=x+50 | | 3x+10=(4x+3) | | 5+x/5=3-x+4/3 | | −2(n−4)−(3n−1)=−3+(4n−1) | | 105=85+n | | x+x+80=180∘ | | 7+×/8=9+x/6 | | x∘+x∘+80∘=180 | | 5(3x+12)+3(-2x+1)=-18 | | 3x+7-5x=45 | | 8(j-4)=2(4K+16) | | -3.5x0.2=0 | | 4x+10=120x+150 | | 12x-5+12x=180 | | y=13-2=6 | | y=13-2=4 | | y=13-2=3 |